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Abstract 

We analyze simulated annealing applied to 
multiple-valued programmable logic array (MVL PLA) 
design. Of spec@c interest is the use of parallel 
processors. We consider the use of loosely-coupled, coarse- 
grainedparallel systems, and study the relationship between 
the quality of the solution and computation time, on the one 
hand, and simulated annealing parameters, start 
temperature, cooling rate, etc., on the other. We also 
investigate simulated annealing where there is a mixture 
of move types. The mixed move approach provides 
improvement in both the number of product terms and 
computation time. 

1: Introduction 

Simulated annealing is a technique for obtaining 
approximate solutions to combinatorial optimization 
problems. Advantages include ease of implementation and 
the potential to find minimal solutions [12]. Essentially, it 
is a search of the solution space with the goal of finding a 
solution of minimum cost. Three steps are repeatedly 
applied [ 121. 

1) Create a new solution from the current solution. 
2) Calculate the cost of the new solution. 
3) If the change in cost of the new solution is below 
some threshold, make it the current solution. 

Simulated annealing is well-suited to the MVL PLA 
minimization problem. Given an expression in the form of 
a set of product terms, our algorithm [2] divides and 
recombines the product terms, gradually progressing toward 
a solution with fewer product terms. Unlike other 
minimization techniques (classified as direct-cover 
methods), this technique manipulates product terms directly, 
breaking them up and joining them in different ways while 
reducing the total number of product terms. Manipulation 
of product terms is done nondeterministically. That is, 
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randomly chosen product terms are randomly combined 
(cost decreasing move), reshaped or divided (cost increasing 
move). Although cost increasing moves take the solution 
away from the optimal solution, they allow escape from 
local minima. Since the solution space in MVL PLA 
minimization is very large, there are usually a large number 
of moves before a minimal or near-minimal solution is 
achieved. To direct the search toward improved solutions, 
a bias is applied to the probability of acceptance of a cost 
increasing move. That is, initially the probability of 
accepting such a move is high, between 0.5 and 1.0. 
However, as the time passes, this probability decreases. The 
result is that, at first, wide excursions are made in the 
solution space, while near the end, only minima are 
explored. When the probability of accepting a cost 
increasing move is low, simulated annealing is usually in a 
minima, and the probability of escape is also low. 

2: Background 

A product term is expressed as c %: %> .... ".X.6,. 
where c E {1,2, ..., r - l }  is a nonzero constant, where the 
literal function is given as 

and where concatenation is the min function; i.e. 
xy=min(x,y). Since the literal function takes on only values 
0 or r-I ,  the product of literals is also 0 or r-I, while the 
complete term takes on values 0 or c. An r-valued function 
f(xI,x2 ,..., x,) takes on values from {O,I ,..., r-I} for each 
assignment of values to the variables, which are also 
r-valued; i.e. xi E {0,1,2 ,..., r-I].  A function can be 
represented by a sum of these product terms as shown on 
the next page, 
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where + is truncated sum, i.e. a+b = max{a+b , r - l / ,  with 
the right sum as ordinary addition, where a and b are 
viewed as integers. 

A minimal sum-of-products expression forf(x,,x,, ..., xn,) 
is one with the fewest product terms. Our approach to 
finding such a solution is based on Dueck et al [2]. 
Specifically, given a set of product terms that sum to a 
given function, we derive another set by making a move. 
Similarly, a move is made from the next set, etc. until 
finally a minimal or near-minimal set is formed. As in [2], 
we investigate two kinds of moves. 

1) Cut-or-Combine: Two chosen product terms are 
combined into one, if possible. If not, one is chosen 
randomly, with probability 0.5. If the chosen product term 
is a 1 minterm (I.e. a product term of the form 

1 "x: %&' ... where a,=bi for all z), the current move 
is abandoned and another pair of product terms is chosen. 
Otherwise, the chosen product term is divided into two. 
Division occurs either along the logic values or 
geometrically [2]. 

2) Reshape: This move, like Cut-or-Combine, operates 
on two product terms, and combines the pair if a combine 
is possible. If not, a consensus term is formed. The fewest 
product terms are chosen to cover all remaining minterms 
P I .  

In this paper, instead of committing to either Cut-or- 
Combine or Reshape, we use a mixture of both with 
different paths, and this is performed concurrently in a 
distributed system. The results of three different approaches 
are investigated: 1) different paths in the solution space, 2) 
mixing types of moves, and 3) concurrency. 

3: Parallel methods for simulated annealing 

3.1: Different paths 

One way to improve the final result is to choose 
different paths. This approach was tested using the Reshape 
algorithm on the ten different functions. C 1,C2,..,C10, used 
in Dueck et a1 [2]. Each has 200 minterms. For every 
function, eight different paths were chosen. Table 1 shows 
the results. Each entry shows two results, the number of 
product terms achieved and the computation time (in 
parentheses). The computation time is CPU seconds on a 
Sun Workstation running the SunOS Release 4.1.1-GFX- 

Rev2 operating system. The column "OUT" shows the 
smallest number of product terms and is considered to be 
the output of the algorithm. In this column, parentheses 
enclose the total computation time over the eight paths. 
Since this was performed on one processor, this total is the 
computation time for this (sequential) version of the 
algorithm. The average of the product terms and 
computation times for each path are given in the last row. 
Table 1 shows a clear dependence on the path. For 
example, the eight paths on function C4 yield five different 
values for a near-minimal solution, 80, 81, 82, 83 and 86 
product terms. 

This experiment shows that a slight improvement in 
the average is achieved by performing eight rather than one 
simulated annealing experiment. Taking the best from eight 
yields an average of 82.4 product terms over the ten 
functions. We can represent the performance of one 
simulated annealing experiment by averaging the averages 
for each path in Table 1, yielding 84.2. This improvement 
requires a large computation time, an average total of 470.5 
seconds vs. 58.0 seconds for one path (calculated by 
averaging the times for each path). Such a large 
computation time can be reduced significantly by using 
multiple processors. Because there is no need to exchange 
information, the various paths can be executed concurrently. 
The concurrent execution is discussed in Section 3.3 . 

3.2: Annealing with mixed moves 

It was shown in Dueck et a1 [2] that Reshape 
produces overall better results than Cut-or-Combine. 
However, this was not true of every function tried; Cut-or- 
Combine did better in a few cases. With this experience, 
we investigated the use of simulated annealing in which 
Cut-or-Combine moves were mixed with Reshape moves 
(Fig. 1). Different mixture ratios were tried, all of which 
used Reshape more than Cut-or-Combine. The best results 
were achieved when Cut-or-Combine moves occurred 4% 
of the time and Reshape moves occurred 96% of the time. 
Our results are shown in Table 2 (with 4% / 96% mixture 
ratio). This experiment yields an average number of product 
terms of 81.7 compared with 84.2 for a single experiment 
using Reshape without Cut-or-Combine. 

3.3: Concurrency in simulated annealing with 
multiple and mixed moves 

We have shown that the use of more than one path 
with and without mixed moves gives a reduction in the 
number of product terms over the use of one path. 
However, substantial computation time is required when 
one processor is used. A speedup can be achieved by using 

18 



Initial Temp 

Mnr Valid Faeh 

Max F m n  

Coding Rae 

Mnr Try Feetor 

n 

: 0.7 

: 4  

: S  

:093 

:2s 

Table 1. Sequential multiple paths with regular Reshape. 

more than one processor in a distributed system. To 
investigate this, we used eight Sun Workstations. Fig. 2 
shows a program for this distributed system. The host 
begins by sending the name of the file (in which the input 
function is placed) to the other processors and later assigns 
itself as processor 0. Each processor chooses the paths 
randomly. The probability of two processors picking 
identical next solution states is reduced by assigning 
different seeds for the random generators of the processors. 
The probability that two or more processors choose the 
Same pair of product terms can be calculated as 
1- M! , where M = (;), N is the number of 

(M-N)! M N  
processors used, and P is the number of product terms, in 
the function to be minimized. For instance, with 8 
processors and a function with 200 product terms this 
probability is 0.0014. The probability of going to the same 
next solution state is even less. Because of this small 
probability, the program does not check if two processors 

a 
1 

I m-N€ I I 
I nMT- I 

1 

I 

have started with the same next solution state, nor if, at 
any point in the computation, the solution is the same. In 
this way, communication is required only at the beginning 
and at the end of the process. 

Figure 1. Simulated annealing with mixed moves. 

Initial Temp : 0.6 

Max Valid Faeta : 4  

Max Frozen : 5  

Cooling Rate : 0.w 

Mnr Try Facta :25 

Cu1-a-CombinJResh WO : 46/96% 

Table 2. Sequential multiple paths with mixed annealing. 
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PI-@ 
Figure 2. Concurrent implementation of 

multiple path with mixed moves. 

HEURISTIC 

CUT-aCOMBINE 

RESHAPE 

To test concurrency, the same tests given in Tables 1 
and 2 were repeated with concurrent and mixed 
simulatedannealing (Test-A and Test-B). Table 1 shows the 
computation time is reduced by factors of 7.1 and 6.6 
respectively. These speedups are reasonably close to the 
theoretical maximum of 8 (there are 8 processors). 

In addition, experiments, were performed on two 
functions, FUNCTION1 and FLTNCTION2, used to com- 
pare Cut-or-Combine with Reshape in [2]. FUNCTION1 is 
a 4-valued 4-variable symmetric function of 176 minterms 
with a known minimal solution of 6 product terms. It is 
interesting because it is difficult to minimize by the Cut-or- 
Combine method. FUNCTION2 is a 4-valued 2-variable 
function for which Reshape cannot find a minimal solution 
if it starts in (one of many) specific initial states. 

The results are shown in Table 3. Concurrent Reshape 
produces the same number of product terms as Reshape, 7 
and 5 for FUNCTION1 and FUNCTION2, respectively. 
Concurrent Multiple and Mixed produces the best results in 
both cases, 6 and 4 product terms for FUNCTION1 and 
FUNCTION2, respectively. It is interesting that the 
occasional application of Cut-or-Combine among many 
applications of Reshape produces a minimal solution, 
impossible with just Reshape alone. 

L 

NNCTION 2 FUNCTION 1 

IN OUT T W S E C )  IN OUT Time(SEC) 

14 19 673 5 4 17.6 

14 7 24.5 5 5 0.25 

3.4: Optimum parameters for concurrent and 
mixed simulated annealing 

CONCURRENTRESHAPE 

CONCURR. 
MULTIPLP&MIXFD 

We consider what effect various parameters have on 
the performance of the methods discussed above. These 
parameters are tested with the following values. 

a. Maximum frozen factor (3 ; 4 ; 5) 
b. Maximum try factor (20 ; 25 ; 29 ) 
c. Maximum valid factor (3 ; 4 ; 5) 
d. Initial Temperature (0.50 ; 0.55 ; 0.60 ; 0.62 ; 0.65 

; 0.70 ; 0.75) 

14 7 27.9 5 5 0.43 

14 6 54.8 5 4' 1.38 

Table 3. Results of two test functions 

e. Cooling Rate (0.90 ; 0.91 ; 0.92 ; 0.93 ; 0.94 ; 0.95 

f. Mixture Rate (Cut-or-Combinemeshape) ( 10%/90% 

The use of these parameters is shown in [7]. Briefly, 
maximum frozen factor represents how many temperature 
values are allowed at which no new moves are generated 
before termination. Maximum valid factor, when multiplied 
by the number of minterms, gives the maximum number of 
valid moves allowed at each temperature. Maximum try 
factor, when multiplied by the number maximum number of 
valid moves, gives the maximum number of attempts at 
moves that are allowed at each temperature. 

We also investigate the effects of temperature 
dependent mixture rates. Fixing the current temperature, we 
change the mixture rate as the time changes. This approach 
did not give better results than the constant mixture rates. 
There are almost 8,000 combinations of these parameters. 
However, this is too many to evaluate experimentally. So 
our approach is to find a near-optimum combination by the 
following process. At the beginning of our search, all 
values of "maximum frozen factor" (3; 4; 5) are tested. 
During these tests, the remaining parameters (b, c, d, e, f )  
are chosen to be the same as with Reshape in Table 1 (0.7; 
4; 5; 0.93; 25), except that a mixture rate of 5%/95% is 
used. From these tests, the best value (5) is chosen. 
Keeping this value, the second parameter (maximum try 
factor) is searched and the best result (25) chosen. The rest 
of the search is done this way in the order given above for 
the parameters. After the first pass down to the last 
parameter, another value is chosen for the third 
parameter and the search proceeds as before. Notice that 
more choices are made for the last parameters. In this way, 
we performed 70 passes for each function across six 
parameters. Results of these tests are given in Table 4. 

; 0.97 ; 0.98) 

; 5%/95% ;4%/96% ; 3%/97% ; 2%/98%) 
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Table 4. Test comparison 

4: Results 

Two criteria are used to judge a minimization 
algorithm, the number of product terms and the computation 
time. Fig. 3 shows how twelve algorithms compare over a 
set of ten 4-valued 4-variable functions each having 20 
minterms. For example, Reshape in Fig. 3 labels a 
simulated annealing experiment using Reshape which 
achieved an average number of product terms of 84.2 with 
an average computation of 58.0 seconds (the column RSAV 
in Table 1). If Reshape is replaced by Cut-or-Combine in 
a single simulated annealing experiment, the result is a 
large number of product terms (87.0) and a much longer 
computation time (1990.6 sec.). This is shown as a point 
labelled Cut-or-Combine in Fig. 3 far away from all other 
algorithms. 

The point labeled A is the experiment discussed in 
Section 3.3 that uses the same parameters used in regular 
Reshape except that the "Concurrent multiple path" method 
is implemented. The result is an average of 82.4 product 
terms with a computation time of 67.5 seconds. 

The point labeled D represents an experiment (Table 4) 
that has the same parameters as A, except that Cut-or- 
Combine and Reshape moves are mixed in the ratio 
4%/96%. The average number of product terms is the Same 
(82.4) as with A, but the computation time (81.0 seconds) 
is worse. This suggests that different parameters may 
improve the result. We tested this as follows. 

In F (Table 4), the same mixture rate was used as in D 
but with new Parameters (0.62 initial temperature; 0.91 
cooling rate). In this case, we see that both the number of 
product terms and computation time are better than D. This 

Figure 3. Test comparison. 

shows that the implementation of mixed annealing requires 
different parameters than regular Reshape. 

In B (which is the concurrent and mixed method - 
Table 4), we obtained the best results in terms of product 
terms with reasonable computation time. The average output 
is 81.7 product terms on the average with a computation 
time of 89.9 seconds 

The good results shown in B inspired the use of these 
same parameters in other cases. We considered the 
application of these parameters to regular Reshape. In C, 
which is a regular Reshape with multiple paths (Table 4). 
we used these same parameters but achieved worse results 
than A. This suggests that the good results produced by 
concurrent and mixed annealing are not just due to the 
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choice of parameters. 
I is the same as F except that the initial temperature 

was chosen as 0.7 (as in regular Reshape). The computation 
time is nearly the same, but average number of product 
terms is worse. 

G and H also show how incorrect parameter selection 
can affect the algorithms performance. In these cases, G is 
the same as B except that the cooling rate is 0.92 instead of 
0.94 and H is the same as G except that the initial 
temperature is 0.65 instead of 0.60. This indicates that 
parameter selection is important as a whole. 

In applying J (Table 4), we sought a better average 
output than regular Reshape, but a faster computation time. 
For this test we used new parameters (0.62 initial 
temperature; 0.92 cooling rate; 20 maximum try factor - 
maximum number of tries at each temperature without a 
move). Indeed, this gave better outputs with a shorter 
computation time. We see that J fell in the left lower side 
of the Reshape. As expected, the number of product terms 
(83.5) was not better than 8 1.7 for B. But there was a large 
improvement in computation time to 44.0 seconds compared 
to 89.9 seconds for B. 

Fig. 4 shows a tradeoff between number of product 
terms and computation time. B seems the best in terms of 
average computation time and output. That is why we 
picked it for "Concurrent Multiple and Mixed Annealing" 
and used for the comparisons below. The solid line at 81.1 
indicates the best average output found, from all the tests 
done (approximately 700) with different parameters. This 
shows the benefit to parameter and mixture rate selection. 

For some of the test results given in Table 4 (A, B, I, 
J), we also investigated the effects of the increasing number 
of processors used. Fig. 4 shows the average number of 
product terms and the computation t i e s ,  as a function of 
number of processors used for concurrent multiple and 

1 2 3 4 6 8 7 8  
NUmbaM-ulld 

Figure 4. Effects of increasing number of processors. 

mixed annealing. J and B seem the best in taking advantage 
of having more processors. 

Fig. 5 shoes a comparison between regular Reshape 
and Concurrent Multiple and Mixed Annealing for all the 
functions (Cl,..,ClO). In this figure, the best results known 
are also included. For five out of the ten cases, Concurrent 
Multiple and Mixed Annealing does nearly as well as the 
best known results, while, for the same functions, Reshape 
is significantly worse. In all cases, Concurrent Multiple and 
Mixed Annealing does better than Reshape. 

Figure 5. "Reshape", "Concurrent multiple and 
mixed" and "best known" comparison. 

Table 5 shows the comparison with various heuristics 
described in [l]. The right column gives the rate of 
improvement in the average number of product terms over 
penalty for computation time. As a reference, the results of 
J are included in this table in last row. We see that the 
outputs of "Concurrent Multiple and Mixed Annealing" are 
better than the others. The increase in computation time is 
quite reasonable when we compare the (improvement in 
average output) / (penalty for computation time) rates for 
all heuristics. 

5: Concluding remarks 

An interesting result from our studies is the surprising 
benefit of mixing two moves, Cut-or-Combine and Reshape. 
For example, the mixing of a small number of Cut-or- 
Combine moves (4%) with Reshape moves (96%) allows a 
minimal solution to be found for a special function, that is 
impossible if 100% of the moves were Reshape. The bene- 
fit of mixing moves was also shown by our experiments on 
sets of functions where there were a low average number of 
product terms (e.g. B and D in Fig. 3). As expected, there 
is an advantage to performing a simulated annealing 

22 



IMPRV. IN AVG OUTPUT (96) I TERM I OWI'$JT I ;; I COMP. I PENALTY IN COMP. TIME (96) 
AVG. IMPRVM. AVG. PENALTY 

HEURISTIC PRODUCT INAVG. COMP. INAVG 

TIME (%) 
1 I I I I I 1 

~~ 

Table 5. Heuristic comparison. 

experiment many times and taking the best result. Doing 
this on a set of ten functions using eight different 
experiments yields 82.4 product terms versus 84.2 the 
expected number for one experiment. This reduction is 
achieved at a large increase in time, 470.5 secs. for the 
better result versus 58.0 secs. for the worse. 

Running multiple experiments concurrently on 
independent processors improved the computation time 
considerably. With eight processors, there is the prospect of 
a speedup of 8 over a single processor sequentially 
performing 8 experiments. We found speedups on the order 
of 7, indicating a diversity in computation times over the 8 
experiments (speedups of 8 are achievable only if all 
experiments require identical computation time.) There is 
clear advantage in using multiple processors. But, there is 
also a point of diminishing returns. Our experience suggests 
that at the eight processors used here, we are beyond that 
point. 
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